

- The students will continue practicing this method, but this time they will have the added step of writing the problem on their white boards first and then using the manipulative to solve. I will count down from three, have them all hold their white boards to do a quick check and then they can erase to get ready for the next problem.
- $\mathbf{2 3 + 4 8}(71), \mathbf{3 7 + 1 1}(48), \mathbf{2 8 + 2 6}(54)$...If more practice is needed: $\mathbf{3 6 + 2 9}$ (65)
- Finally, students will put their manipulatives at the top of their desk. I will write three problems on the board and they will use only their whiteboards to solve these problems. If a student really struggles with a problem, they may reach up and use the manipulatives once more. I will be walking around the room during this time, and they must call me over once they have solved all three so I can check their work.

$$
\circ \quad 23+35(58), 19+27(46), 64+18(82)
$$

In my own classroom, I would turn this into a two-day lesson. Rather than using the desk camera on the first day (as I did on the previous lesson), I would bring the projector out both days. This way I would not have to get rid of the scaffolded approach on the first day, and the second day would be a chance for students to come up one at a time and do my job at the projector.
Review (wrap up and transition to next activity):
How do the Base 10 blocks help us with regrouping?
2
Do they make it easier to see when we need to regroup?
Was it easier to solve these regrouping problems after practicing with the blocks?

Formative Assessment: (linked to objectives, during learning)

- Progress monitoring throughout lesson (how can you document your student's learning?)
I will be able to check students' understanding once when they are holding up their whiteboards during the second explore activity (manipulatives and whiteboards) and again, when I am walking around checking their answers on the final three problems.

Summative Assessment (linked back to objectives, END of learning) By the start of next week, students will take another addition math facts assessment, which will them be added to their personal data folder for tracking.

Reflection (What went well? What did the students learn? How do you know? What changes would you make?):

One of $m y$ favorite parts about this lesson was the high level of student interest from the very beginning. The second graders loved the overhead projector. Although it is an older piece of equipment, it was new to them, and it captured their attention before I even started teaching. They especially loved the teacher's set of manipulatives since they were pretty shades of transparent blue and green. I also liked that students seemed to catch on to the lesson quickly. It was mostly extended practice of the math skills they had been working on all week, and it was done in a similar fashion as Mrs. Lang had been using all week, just with a little twist by incorporating the projector instead of the desk camera and the usual changes that come with my teaching style.

The students learned how to use solve two-digit addition problems using the regrouping method through a scaffolded approach. Again, they had been working with this skill set for the three days prior to my lesson, so a lot of this was review and additional practice. One difference that may have helped improve learning was they actually got to work with manipulatives and sort them out on a graphic organizer sheet rather than seeing pictures of "manipulative" blocks in their workbooks they follow along with. Furthermore, I used scaffolding to help students reach the point where they could solve the problems I wrote with little help from me or the manipulatives. Due to time restraints, I had to adapt the end of my lesson and skip over a few example problems, but I felt that the students were at a proficient level of understanding, allowing me to move ahead a little faster. After completing several problems together with the manipulatives, students then had to write the problem with me as we continued using manipulatives to solve. During the final step, I asked students to move their blocks to the corner of their desk and only use them if they really got stuck. By the end of the lesson, I wrote the last problem on the board and was able to walk around while students solved it. I did see a few students reach for their manipulatives, but almost every student still found the answer by the time we needed to transition.

There are two changes I would make to this lesson. The first one I realized in the middle of my lesson, and it made me a little nervous. I was suddenly aware that I am not as comfortable and aware of all the math lingo involved in just this one skill set. Although I had observed Mrs. Lang teach similar lessons all week, she came to give me two quick reminders in my lesson to ensure the students were taking all the proper steps. They were minor steps that most likely did not drastically alter students' understanding, but it threw my confidence off a little, and I felt bad for not teaching the first few example problems holistically. The second change I would make did not occur to me until completing this reflection. Looking back at how fascinating the students found the projector and transparent manipulatives, I would probably make this a two day lesson in my own classroom. Personally, I would use the desk camera one less day and bring out the projector again.

[^0]
[^0]: **Careful reflection is important after any lesson to ensure successes and weaknesses are identified to improve and make the next lesson more successful than the last. Red text indicates modifications I would make if I were to teach this lesson again.

